The Reaction Mechanism of the Partial Oxidation of Methane to Synthesis Gas: A Transient Kinetic Study over Rhodium and a Comparison with Platinum
نویسندگان
چکیده
The partial oxidation of methane to synthesis gas over rhodium sponge has been investigated by admitting pulses of pure methane and pure oxygen as well as mixtures of methane and oxygen to rhodium sponge at temperatures from 873 to 1023 K. Moreover, pulses of oxygen followed by methane and vice versa as well as pulses of mixtures of methane and labelled oxygen were applied to study the role of chemisorbed oxygen and incorporated oxygen in the reaction mechanism. The decomposition of methane on reduced rhodium results in the formation of carbon and hydrogen adatoms. During the interaction of pure dioxygen with rhodium the catalyst is almost completely oxidized to Rh2O3. In addition to rhodium oxide, oxygen is also present in the form of chemisorbed oxygen species. During the simultaneous interaction of methane and dioxygen at a stoichiometric feed ratio and a temperature of 973 K only 0.4 wt% Rh2O3 is present. The chemisorbed oxygen species are completely desorbed after 2 s. A Mars–Van Krevelen mechanism is postulated: methane reduces the rhodium oxide, which is reoxidized by dioxygen. Synthesis gas is produced as primary product. Hydrogen is formed via the associative desorption of two hydrogen adatoms from reduced rhodium and the reaction between carbon adatoms and oxygen present as rhodium oxide results in the formation of carbon monoxide. The consecutive oxidation of CO and H2 proceeds via both chemisorbed oxygen and oxygen present as rhodium oxide. Continuous flow experiments were performed to compare rhodium and platinum. When compared to platinum, rhodium shows a higher conversion to methane at a comparable temperature and also a higher selectivity to both CO and H2, the difference for CO being most pronounced. The observed differences in methane conversion and selectivities for the two catalysts are ascribed to the higher activation energy for methane decomposition on platinum compared to rhodium. An additional explanation for the difference in H2 selectivity could be the higher activation energy for OH formation on rhodium compared to platinum. c © 1997
منابع مشابه
KINETIC STUDY OF SYNTHESIS OF TITANIUM CARBIDE BY METHANOTHERMALREDUCTION OFTITANIUM DIOXIDE
Abstract: Reduction of the Titanium dioxide, TiO2, by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150°C to 1450°C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method wa...
متن کاملKinetic comparison of Ni/Al2O3 and Ni/MgO-Al2O3 nano structure catalysts in CO2 reforming of methane
The kinetic characteristics of the Ni/Al2O3 and Ni/MgO-Al2O3 catalysts were investigated in CO2 reforming of methane (CRM). The reaction orders (α and β) and the rate constant (k) were calculated using the non-linear regression analysis, in which the sum of the squared differences of calculated and experimental CO2 reforming of m...
متن کاملExperimental investigation of Methane Partial Oxidation in Porous Media for Hydrogen Production
One of the future technologies for energy supply in the electricity and automotive industries is the use of fuel cells. Hydrogen is the main source of fuel in fuel cells. Methane reforming through partial oxidation of methane is one of the methods of hydrogen production. In this paper, this process for the production of hydrogen gas, which is the energy source of these fuel cells, is examined n...
متن کاملInvestigation of CO2 and H2O Addition to Natural Gas for Production of Synthesis Gas
General modeling and optimization of syngas production via noncatalytic autothermal partial oxidation of methane are carried out using our developed scientific software which was based on the minimization of total Gibbs energy. In this work, a novel application of the direct search and Newton-Raphson methods was introduced to apply to optimization of a complex chemical reaction. Sensitivity ana...
متن کاملExperimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith
The objective of this investigation is a better understanding of transient processes in catalytic monoliths. As an example, the light-o( of the partial oxidation of methane to synthesis gas (H2 and CO) on a rhodium/alumina catalyst is studied experimentally and numerically. Methane/oxygen/argon mixtures are fed at room temperature and atmospheric pressure into a honeycomb monolith, which is pre...
متن کامل